翻訳と辞書 |
Urysohn universal space : ウィキペディア英語版 | Urysohn universal space The Urysohn universal space is a certain metric space that contains all separable metric spaces in a particularly nice manner. This mathematics concept is due to Pavel Samuilovich Urysohn. ==Definition== A metric space (''U'',''d'') is called ''Urysohn universal'' if it is separable and complete and has the following property: :given any finite metric space ''X'', any point ''x'' in ''X'', and any isometric embedding ''f'' : ''X''\ → ''U'', there exists an isometric embedding ''F'' : ''X'' → ''U'' that extends ''f'', i.e. such that ''F''(''y'') = ''f''(''y'') for all ''y'' in ''X''\.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Urysohn universal space」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|